
Evaluation of the method based on PSR techniques for target detection in reverberation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2009 J. Phys. A: Math. Theor. 42 195004

(http://iopscience.iop.org/1751-8121/42/19/195004)

Download details:

IP Address: 171.66.16.153

The article was downloaded on 03/06/2010 at 07:38

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/42/19
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 42 (2009) 195004 (16pp) doi:10.1088/1751-8113/42/19/195004

Evaluation of the method based on PSR techniques for
target detection in reverberation

Huiquan Zhang1, Bohou Xu1, Jianlong Li2 and Zhong-Ping Jiang3

1 Department of Mechanics, State Key Laboratory of Fluid Power Transmission and Control,
Zhejiang University, Hangzhou 310027, People’s Republic of China
2 Institute of Information and Communication Engineering, Zhejiang University,
Hangzhou 310027, People’s Republic of China
3 Department of Electrical and Computer Engineering, Polytechnic University, Brooklyn,
NY 11201, USA

E-mail: xubohou@zju.edu.cn

Received 26 December 2008, in final form 20 February 2009
Published 21 April 2009
Online at stacks.iop.org/JPhysA/42/195004

Abstract
In this paper, we consider the problem of target detection in the presence of
sea-bottom reverberation. The method based on parameter-induced stochastic
resonance (PSR) is adopted, and the non-Rayleigh properties of reverberation,
as well as some random characteristics of target echoes, such as random
phase and amplitude, are involved. Numerical simulations are carried out
to evaluate the performances of the method based on PSR techniques versus
the conventional method. The results show that when the number of scatterers
that contribute to the reverberation at the same time becomes smaller, the
receiver based on PSR techniques will perform better and be more efficient for
reverberation suppression than the conventional receiver.

PACS numbers: 05.40.−a, 02.50.−r

1. Introduction

Since proposed by Benzi et al in 1981 to explain the periodicity of ice ages [1, 2], the theory
and applications of stochastic resonance (SR) has been an attractive research area [3]. The fact
that the output signal-to-noise ratio (SNR) can be larger than the input SNR [4, 5], means that
the applications of SR in signal processing, especially in signal detection, have attracted a lot
of interest recently [6–8]. It has been shown that some nonlinear suboptimal [9, 10] or optimal
[11] detectors can be improved by adding noise, which show the SR effects in signal detection.
On the other hand, some nonlinear SR systems, such as static threshold systems, dynamical
bistable systems, discrete autoregressive models, static or dynamical saturating systems and
the parallel arrays [7, 8, 12] of these subsystems, are inserted before the linear coherent
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detector (LCD) [6, 8] to improve the detection performance via adding noise or optimizing
system parameters, the latter of which is the basis of parameter-induced SR (PSR) [13, 14]. It
was shown that the performance of the LCD in white Gaussian noise cannot be enhanced by SR
or PSR techniques [6, 8, 15], because the LCD is already optimal in this case. Nevertheless,
more robustness of the bistable/monostable filter to mismatch was observed [7, 16], and
the detection enhancements by SR in some non-Gaussian cases have been demonstrated
[6, 8].

In this paper, we consider the problem of target detection in the presence of reverberation,
which is often encountered in an active sonar system. In the shallow-water environment,
the detection of targets on the sea floor is often limited by the bottom reverberation [17].
According to the point-scattering theory [18–20], the reverberation arises from a multitude
of scatterers distributed independently on the sea floor. On the assumptions of a very large
number of reflectors, the reverberation process has a Gaussian probability density function
(PDF) and thus Rayleigh envelope. However, non-Rayleigh reverberation can occur when the
conditions of the central limit theory (CLT) are violated [18, 20–22]. For example, there may
be too few scatterers in the resolution cell of the high-resolution active sonar systems, or the
scatterers may not be identically distributed. The non-Rayleigh reverberation always results
in more heavy-tailed envelope PDFs after the matched filter [22], leading to an increase of the
probability of false alarm.

In the previous paper [23], we have proposed the method based on PSR techniques for
this problem, and only the Rayleigh reverberation was considered. Therefore, we wonder
how better the performance of this method is compared to the conventional receiver (a spatial
matched filter followed by a LCD) when the reverberation envelope deviates from the Rayleigh
distribution. In this paper, the detection performances of the method based on PSR techniques
and the conventional receiver are evaluated and compared through numerical simulations.
In addition, non-Rayleigh characteristics of the reverberation, as well as random phase and
amplitude of the target echo, are involved in this paper. The reverberation is generated
according to the point-scatterer simulation method [24], and hence non-Rayleigh reverberation
is derived when reducing the number of scatterers. Thus, utilizing the simulated reverberation,
the performances of the two receivers can be evaluated with Monte Carlo simulations.

The rest of this paper is organized as follows. In section 2, we give a brief review of the
problem of target detection in bottom reverberation, together with the conventional resolution
and that based PSR techniques for such a problem. Numerical simulations are carried out in
section 3. The point-scatterer simulation method for reverberation generation is presented,
and the results of Monte Carlo simulations as well as some comments are given. Finally,
conclusions are made in section 4.

2. The detection problem and its resolutions

2.1. The problem of target detection in bottom reverberation

Assume that the transmitter emits a pure-tone pulse signal using a non-directive source with
the frequency f0 (Hz) and duration T (s). There is a target body on the bottom at the range
R � h as shown in figure 1, where h is the depth of the sea. Here we assume that the specular
reflection of the sea bottom is weak, so that normal-mode propagation is negligible. Thus,
assuming that the target echo arrives at the horizontal array with the angle θ , the spacetime
target echo signal along the array is expressed as

starget(x, t; τ) = A cos(2πf0(t − tx) + φ)win(t − tx : 0, T ), (1)
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Figure 1. Schematic model of target detection in shallow water.

win(t : 0, T ) =
{

1, 0 < t < T,

0, otherwise.
(2)

tx = τ − cos θ

c
x, (3)

where φ and A are the unknown or random phase and amplitude, respectively, c is the acoustic
velocity, x is the coordinate along the array, and τ is the arrival time of the target echo. The
receiving array with a length of L, as shown in figure 1, consists of M sensors r1, r2, r3, . . . , rM ,
and the coordinate x at the middle of the array is taken as zero.

According to the point-scattering model [18], the interfering reverberation R(x, t) can be
treated as a sum of echoes scattered by the scatterers distributed at the ensonified cirque on
the sea bottom, as shown in figure 1:

R(x, t) =
N(x,t)∑
i=1

aif (t − ti(x), ei ), (4)

where f (t) is the transmitted signal, ai is the stochastic amplitude of the ith scattered signal,
ti(x) is the stochastic arrival time of the ith scattered signal at the sensor with the coordinate
x, and N(x, t) is the number of scatterers that contribute to R(x, t), itself a stochastic process.
The ei represents other stochastic parameters characterizing the scatterers (e.g., Doppler),
and it is neglected in this paper for simplicity. Thus, the reflected signal of each individual
scatterer has the same form of the transmitted signal, and thus has the same form of the
target signal. The differences between individual scattered signals and target echoes lie in two
facets. First, target echoes have different statistics (such as amplitude and phase) from those
of the background scattered signals, and generally, target echoes are much stronger than the
individual scattered signals. Second, there may be only one or several targets in the interested
area, while there will be lots of scatterers, making the reverberation strong enough to conceal
the target echo. Furthermore, the individual scattered signals come from different orientations
with different time delays, which makes the reverberation have different spatial and temporal
correlations from those of target echoes. For a single-frequency pulse signal, R(x, t) has the
horizontal spatio-temporal coherence form [18, 25–27]:

ρR(x, τ ) ≈
⎧⎨
⎩J0

(
2π |x|

λ

) (
1 − |τ |

T

)
cos 2πf0τ, −T < τ < T,

0, otherwise,
(5)

where J0 is the zero-order Bessel function, and λ is the wavelength of the transmitted signal.
Now, the problem is to decide whether there is a target echo embedded in the reverberation

at the range R (or time τ ){
H1 : r(x, t) = starget(x, t; τ) + R(x, t),

H0 : r(x, t) = R(x, t),
(6)

3
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where r(x, t) is the signal received by the array, and H1,H0 correspond to the two hypotheses
that whether a target exists or not, respectively. As the target echo only exists during [τ, τ +T ],
we let τ = 0 for convenience and the decision is made according to the received signal r(x, t)

during [0, T ].

2.2. The conventional method

First we consider the binary case of a sine wave with random phase and amplitude in white
Gaussian noise:{

H1 : r(t) = A sin(ωt + φ) + w(t),

H0 : r(t) = w(t),
(7)

where w(t) is the white Gaussian noise. Assuming that φ is uniformly distributed, the optimum
receiver is [28]

l = L2
c + L2

s

H1

≷
H0

γ, (8)

where

Lc = 2

T

∫ T

0
r(t) cos(ωt) dt, (9)

Ls = 2

T

∫ T

0
r(t) sin(ωt) dt . (10)

The threshold γ can be determined for desired probability of false alarm PFA. It is easy to
prove that

√
l is Rayleigh distributed under H0 hypothesis, and E(l|H0) = 2E

(
L2

c

∣∣H0
) =

2E
(
L2

s

∣∣ H0
) 
= σ 2. Thus,

PFA = P(H1|H0) = exp
(
− γ

σ 2

)
. (11)

The performance of such a receiver increases with the SNR A2/σ 2 [28].
Now we turn back to the array signal in equation (6). To make the main lobe of the array

centered at an angle θ , the signal received by the sensor at x is delayed by τ(x) = x cos θ/c,
and then all the delayed signals are summed up:

r(t) = 1

M

M∑
i

r(xi, t − τ(xi)) = A cos(2πf0t + φ) + R̄(t), (12)

where R̄(t) = (1/M)
∑M

i=1 R(xi, t−τ(xi)). The above equation is referred to as the spatial
matched filter or commonly conventional beamforming [29].

Comparing equation (12) with the first equation in (7), the difference is between R̄(t) and
w(t). Although R̄(t) is not white and sometimes even not Gaussian, the optimal receiver in
white Gaussian noise given by equation (8) is frequently used for its simple structure and good
performance in most cases [30]. Thus, the conventional receiver for this problem is expressed
by equations (8)–(12), and its structure is shown in figure 2(a).

2.3. The method based on PSR techniques

To utilize the PSR techniques, the SR system is inserted before the LCD [23]. First, the spatial
component of the received signals r(x) = A cos(2πf0x cos θ/c +φ)+R(x) is considered, and

4
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(a)

(b)

Figure 2. Block scheme of the two receivers. (a) Conventional receiver. (b) The receiver based
on PSR techniques.

the signal at each sensor is delayed with τx = (L cos θ − kλ)x/(Lc) in the time domain to
lower its spatial frequency:

r ′(x, t) = r(x, t − τx) = A cos

(
2πf0t +

2πk

L
x + φ

)
+ R′(x, t), (13)

where R′(x, t) = R(x, t − τx), and k is the number to be determined. Thus, its spatial
component becomes r ′(x) = A cos(2πkx/L + φ) + R′(x), which is pre-processed by the SR
system:

dy

dx
= ay − by3 + r ′(x) = ay − by3 + A cos

(
2πk

L
x + φ

)
+ R′(x), (14)

where a > 0, b > 0 are the system parameters, and y is the system output. As we have
assumed x = 0 at the middle of the array, there is −L/2 � x � L/2 in equations (13) and
(14). For convenience in later expressions, we make the transformations, x = x + L/2 and
φ = φ −πk, resulting in 0 � x � L in equations (13) and (14). Then, approximating the term
A cos(2πkx/L + φ) with a ladder function, that is, treating it as a constant value si in each
interval [(i − 1)
x, i
x], and furthermore, approximating the term R′(x) with Lorentzian
colored noise [23], the approximated Fokker–Planck equation (FPE) related to equation (14)
can be written as

∂Pi(y, x)

∂x
= − ∂

∂y
[ci(y)Pi(y, x)] + D

∂2

∂y2

[
1

1 − dxc
′
i (y)

Pi(y, x)

]
, (15)

where 0 � x � 
x,Pi(y, x) is the probability density of the output y in the ith
interval, ci(y) = ay − by3 + si , and c′

i (y) is its derivative. D is the noise density of the
approximated colored noise, and dx is its correlation length, and they can be determined as
D = σ 2

R′
/
(4UB), dx = D

/
σ 2

R′ , where σ 2
R′ is the variance of R′(x) and UB is the approximate

bandwidth of reverberation’s spatial frequency which is read from the Fourier transformation
of the spatial coherence of R′(x). We assume that variance of the reverberation has been
normalized to 1, and hence, dx = D = 0.25/UB.
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In [23], the optimal LCD was designed according to the output statistics of equation (14)
under both hypotheses. However, in this case the phase and amplitude of the target echo are
both unknown or random, so the mean value of the output ȳ(x) under H1 hypothesis cannot be
solved from the FPE, and the optimal LCD cannot be derived. For the target echo is periodic,
it can be deduced that ȳ(x) has the component of A′cos(2πkx/L + φ′) when the SR system
reaches its cyclostationary state under H1 hypothesis, and the phase φ′ must be a function of
both A and φ, while amplitude A′ is only a function of A. Therefore, the conventional detector
given in equations (8)–(10) still can be used for the output of equation (14):

l′ = l2
c + l2

s

H1

≷
H0

γ ′, (16)

where

lc = 2

L

∫ L

0
y(x) cos(2πkx/L) dx, (17)

ls = 2

L

∫ L

0
y(x) sin(2πkx/L) dx, (18)

where L is the length of the receiving array. Denoting E(l′|H0) as σ ′2, now the crucial issue
is to tune the system parameters a and b to maximize the output SNR, A′2/σ ′2. For A is
unknown or random here, we will consider the worst case that Amin is the minimum of the
possible values, and then the system is designed for this worst case. For A′ is independent
of φ, given an arbitrary value of φ,A′ can be solved from the cyclostationary solution of the
FPE.

The solution of equation (15) can be obtained using the eigenfunction expansion method
[31]:

Pi(y, x) ≈
N̄∑

n=0

ai
n

i
n(y) exp

(−λi
nx

)
+

⎡
⎣Pi−1(y,
x) −

N̄∑
n=0

ai
n

i
n(y)

⎤
⎦exp

(−λi
N̄+1x

)
, (19)

where λi
n is the nth eigenvalue of equation (15) in the ith interval, i

n(y) is the corresponding
eigenfunction, and ai

n, n = 0, 1, . . . , N̄ , are constant coefficients. It is assumed that
0 = λi

0 < λi
1 � · · · � λi

N̄+1, and λi
1 is called the system response speed in the ith interval [13].

Thus with the given initial probability density function P1(y, 0), Pi(y, x) can be calculated
from equation (19) recursively. Assume that si is periodic with number I (each period of the
target echo is divided into I intervals), and thus, the system reaches its cyclostationary state
when P(i+I )(y,
x) = Pi(y,
x) � P̃i(y,
x). Then, A′ is derived from

A′2 =
[

2

I
x

∫ I
x

0
ȳ(x) cos

(
2πk

L
x

)
dx

]2

+

[
2

I
x

∫ I
x

0
ȳ(x) sin

(
2πk

L
x

)
dx

]2

, (20)

where

ȳ(x) =
∫ +∞

−∞
yP̃i(y, x − (i − 1)
x) dy, (i − 1)
x < x � i
x. (21)

To determine σ ′2, the auto-correlation function of the output under H0 hypothesis should
be derived, that is, to solve the transition probability P0(y, x|y ′, 0) under H0 hypothesis, which
obeys the same FPE:

∂P0(y, x|y ′, 0)

∂x
= − ∂

∂y
[c0(y)P0(y, x|y ′, 0)] + D

∂2

∂y2

[
1

1 − dxc
′
0(y)

P0(y, x|y ′, 0)

]
, (22)

6
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where c0(y) = ay − by3 and c′
0(y) is its derivative. The solution can also be expanded as

P0(y, x|y ′, 0) ≈
N̄∑

n=0

a0
n(y

′)0
n(y) exp

(−λ0
nx

)

+

⎡
⎣δ(y − y ′) −

N̄∑
n=0

a0
n(y

′)0
n(y)

⎤
⎦ exp

(−λ0
N̄+1x

)
. (23)

Then we obtain the auto-correlation function of the output y under H0:

Cy(x) =
∫∫

yy ′P0(y, x|y ′, 0)P0(y
′) dy dy ′, (24)

where P0(y
′) is the stationary probability density function of the output under H0. Based on

this, σ ′2 is derived as

σ ′2 = 4

L2

∫∫
cos

(
2πk

L
x

)
Cy(x − x ′) cos

(
2πk

L
x ′

)
dx dx ′

+
4

L2

∫∫
sin

(
2πk

L
x

)
Cy(x − x ′) sin

(
2πk

L
x ′

)
dx dx ′. (25)

It is observed that for given values of Amin and k, the output SNR A′2/σ ′2 is a function
of a and b. Therefore, the system parameters a and b must be tuned properly to maximize
SNRout(a, b). As the cyclostationary solution was used in equation (20), the system response
speed should be fast enough to make the system reaches its cyclostationary state within few
periods of the target signal. In [23], the value of b = b̄ was first determined to satisfy the
average system response speed under H1 hypothesis when a = 0, and then a is optimized with
b = b̄ unchangeable. The same strategy of tuning parameters will be used here, while b̄ is
determined from λ0

1(0, b̄) = 3k/L, that is, to make the system response speed when Amin = 0
be three times of the frequency of the target signal. For the system response speed increases
with the value of A, this strategy will ensure the satisfaction of system response speed for the
worst case. Then, the parameter a is optimized according to

max
a>0,b̄

SNRout. (26)

Figure 3 plots some curves of SNRout versus a for different values of Amin when k/L = 1/72.
It is found that SNRout is unimodal within a certain interested range of a, and a peak value of
SNRout as well as the optimal a can be found for each value of Amin.

To utilize the temporal component of the received signals, the two-dimensional signal
r ′(x, t) in equation (13) is unfolded into longer one-dimensional signal:

r ′′(x) = r ′
(

x − nL,
nk

f0

)
= A cos

(
2πk

L
x + φ

)
+ R′

(
x − nL,

nk

f0

)
, (27)

where 0 � x � L′ = Tf0L/k, and n = �x/L� is the floor number of x/L. Thus, r ′(x, t) is
transformed into r ′′(x) with a one-dimensional length of L′. We have shown that the smaller k
is, the better the system performs [23], because the information in the temporal component of
r ′(x, t) is more sufficiently utilized with smaller k. However, the smaller k is, the larger value
L′ takes, which increases the computational load. Moreover, when k < 1/4 the improvement
on performance is limited. Therefore, k = 1/4 is adopted in this paper.

Now, the structure of the receiver based on PSR techniques can be drawn as figure 2(b).
Note that R′(x) in equation (14) is replaced by R′(x − nL, nk/f0) during execution, but
the system is still designed according to equation (14) with R′(x) of length L′. For some
additional correlations are brought from the time domain into R′(x − nL, nk/f0), thus into

7
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Figure 3. The relationship between SNRout and the parameter a, with L = 1080 and k = 15.

the output y(x), σ ′2 derived from equation (25) should be modified. Denoting it as σ ′2
m , the

detailed deduction is given in the appendix. Substituting σ ′2
m into equation (11), one can get

the threshold γ ′ of equation (16) for desired PFA.
It is necessary to note that γ and γ ′ derived from equation (11) may not result in the

desired probabilities of false alarm in practice, because the square roots of the outputs,
√

l

and
√

l′, are not Rayleigh distributed in most cases. Later, in the following section, we
will find that the square root of the output of the conventional receiver

√
l is not Rayleigh

distributed even when R(x, t) has the Gaussian density and Rayleigh envelope, because the
spatial matched filter of equation (12) makes the probability of reverberation R̄(t) deviate
from the Gaussian distribution. Besides, although R′(x) is Gaussian, the output y(x) is not
Gaussian, and R′(x − nL, nk/f0) with different n are highly correlated, which increases
the correlations of the output y(x). Hence, conditions for the CLT ensuring the Gaussian
and independent statistics of lc and ls are not satisfied, and

√
l′ is not Rayleigh distributed

either.

3. Numerical simulation and results

3.1. Generation of reverberation

The first step of our simulation is to generate reverberation noise. Lots of work have
been done on this topic [17, 24, 32]. Here we use the point-scatterer simulation method
[20, 24], which simulates each scattered signal individually. Despite its inherent computational
intensiveness, this method has direct control over the statistics of the scattering, thus the
statistics of reverberation.

The geometry of reverberation simulation is shown in figure 4, which is the top view of
figure 1. For R � h, the azimuth angles θi of the reflected signals are assumed to vary from
0 to 2π . In addition, we are interested in the range interval [R − 
RL,R + 
RR], where

RL +
RR = 
R 	 R. Thus, the scatters are randomly placed on the sea bottom, with their
position coordinates Ri and θi uniformly and independently distributed on [R−
RL,R+
RR]

8
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Figure 4. The geometry of simulation.

and [0, 2π ], respectively. To simulate the reverberation, each scattered signal is generated
as

si
scat(x, t) = ai cos[2πf0(t − ti)]win(t − ti : 0, T ), (28)

where

ti = 2(Ri − R) − x cos θi

c
, (29)

and ai is assumed to be Rayleigh distributed. Here we have taken the time of the target echo
(from the range R) arriving at the sensor with x = 0 as the zero-time-reference point. Thus,
the total reverberation can be generated by

R(x, t) = 1

G

N∑
i=1

si
scat(x, t), (30)

where N is the total number of scatterers we set in the area, and G is a normalizing factor to
ensure the unit variance of R(x, t). For each sensor, the average number of scatterers that
contribute to the reverberation at the same time, approximates 〈N〉 = (N/
R)T c/2, where
N/
R corresponds to the average number of scatterers distributed on the cirque with unit
radial thickness. If each scattered signal has unit variance, there is G = √〈N〉.

Therefore, for a given T, we can set 〈N〉 or N/
R large enough to make R(x, t) have
Gaussian distribution (or Rayleigh envelope), otherwise reduce 〈N〉 or N/
R to make R(x, t)

deviate from Gaussian distribution (or Rayleigh envelope). Figure 5 gives the estimated PDFs
of an instantaneous value of R(x, t) and its envelope for different values of 〈N〉. It can be
found that when 〈N〉 is as large as 100, the PDFs of R(x, t) and its envelope match well to the
Gaussian and Rayleigh distributions, respectively, and when 〈N〉 is as small as 5, the PDFs of

9
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Figure 5. The PDFs of the reverberation R(x, t) (panel (a)) and its envelope (panel (b)).

R(x, t) and its envelope deviate from the Gaussian and Rayleigh distributions, respectively,
with their tails increased.

3.2. Results and comments

Assume that the transmitter emits a pulse with frequency f0 = 15 kHz and duration T =
1 ms. A target echo arrives at the array with azimuth angle θ = 60◦. The signals are received
by a horizontal sensor array with length L = 18 m and sensor interval d = 0.05 m. The
amplitude of the target echo A is uniformly distributed on [0.1, 0.2], and thus Amin = 0.1.

First, the case of H0 hypothesis (reverberation only) is studied to evaluate the actual
probabilities of false alarm P a

FA of the two receivers. To make it straightforward to compare
the performances of the two receivers, the outputs l and l′ are normalized respectively by σ 2 and
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Figure 6. (a) The relationships between P a
FA and γ of the two receivers for different values of 〈N〉.

(b) The relationships between PD and γ of the two receivers for different values of 〈N〉. Each
curve is estimated from Monte Carol simulation with 104 realizations of the reverberation in each
case.

σ ′2
m derived from equations (A.3) and (A.4), respectively. Figure 6(a) plots the relationships

between P a
FA and γ of the two receivers for different values of 〈N〉. Each curve of P a

FA is
estimated from Monte Carol simulation with 104 realizations of the reverberation in each case.
The curve of desired PFA is plotted according to equation (11) with σ 2 = 1. It is found
that a given value of threshold γ, corresponding to a small desired probability of false PFA,
will result in larger actual probabilities of false P a

FA of both the receivers, because
√

l and√
l′, the square roots of the outputs of the two receivers, are both non-Rayleigh distributed

with heavier tails than Rayleigh distribution even when 〈N〉 is large, as shown in figure 7.
Although it has been shown that when 〈N〉 = 100 the reverberation of each sensor R(x, t)

has Rayleigh envelope (cf figure 5(b)), the beamforming of equation (12) makes the effective
number of scatterers that contribute to R̄(t) at the same time much smaller than 〈N〉, which

11



J. Phys. A: Math. Theor. 42 (2009) 195004 H Zhang et al

0 0.5 1 1.5 2 2.5 3 3.5 4
10

10

10

10
0

Normalized outputs

Pr
ob

ab
ili

ty
 d

en
si

ty

PDF of (l’/σ’2
m

)1/2

Rayleigh PDF

PDF of (l/σ2)1/2
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√

l/σ 2 and
√

l′/σ ′2
m , square roots of the normalized outputs of the two

receivers, when 〈N〉 = 500. Each curve is estimated based on 104 realizations.

makes R̄(t) have non-Gaussian PDF and non-Rayleigh envelope. Therefore,
√

l is not exactly
Rayleigh distributed even when 〈N〉 = 500 (cf figure 7). Note that when 〈N〉 → ∞,

√
l

will have Rayleigh PDF, which however, is not considered here for its technical difficulties
in numerical realization. As mentioned at the end of the last section,

√
l′ is not Rayleigh

(cf figure 7), because the receiver based on PSR techniques is nonlinear, making its output
y(x) be non-Gaussian, and the correlations of R′(x − nL, nk/f0) at different n increase the
correlations of the output, which violates the CLT that ensures the Gaussian and independent
statistics of lc and ls . In addition, comparing the P a

FA curves of the two receivers, for the cases
of 〈N〉 = 50 and 〈N〉 = 100, the receiver based on PSR techniques has smaller P a

FA than the
conventional receiver in the region of large γ .

To evaluate the detection performance, only analyzing the cases under H0 hypothesis
is not sufficient. Then, the H1 hypothesis is considered later. Similarly, 104 realizations
of reverberation embedded with the target echo are generated independently, then processed
by the two receivers, respectively. The outputs l and l′ are also normalized by σ 2 and σ ′2

m
respectively, then compared with the threshold γ , and thus the probabilities of detection
PD = P(H1|H1) can be estimated, which are shown in figure 6(b). It is found that PD

increases with 〈N〉 decreasing in the region of small γ for both receivers, while it decreases
with 〈N〉 decreasing in the region of large γ for both receivers. Comparing the curves of the
two receivers, the conventional receiver has higher PD at large values of γ . However, in that
region of γ, PD is relatively small to make an efficient detection. It is more important that
there is a region of γ (approximately from 4 to 10); the receiver based on PSR techniques has
higher PD, and still in this region, it has almost equivalent or smaller P a

FA than the conventional
receiver when 〈N〉 � 100, as shown in figure 6(a). That is to say there is such a region of γ ,
the receiver based on PSR techniques performs better than the conventional receiver when the
number of scatterers is not very large.

Another intuitive measurement of the detection performance is the receiver operating
characteristic (ROC) curve which is plotted as PD versus P a

FA. From the ROC curve, one
can find the corresponding PD of a receiver for any given value of P a

FA. Figure 8 shows the

12



J. Phys. A: Math. Theor. 42 (2009) 195004 H Zhang et al

10 10 10
0

10

10
0

Pa
FA

P D

PSR techniques

Conventional receiver

<N>=500

<N>=100

<N>=50

Figure 8. The ROC curves of the two receivers for different values of 〈N〉.

0 0.05 0.1
0

2

4

6

8

10

12

14

16

18

20

t (seconds)

N
or

m
al

iz
ed

 o
ut

pu
t  

l/
σ

2

True target

False alarms

Threshold

0 0.05 0.1
0

2

4

6

8

10

12

14

16

18

20

t (seconds)

N
or

m
al

iz
ed

 o
ut

pu
t  

l’
/σ

’2 m

(b)(a)

True target

Threshold

False alarm

Figure 9. The temporal evolution of the normalized outputs of the two receivers during
[−0.1, 0.1] s, with a same snapshot r(x, t) as their inputs. (a) Outputs of the conventional
receiver. (b) Outputs of the receiver based on PSR techniques.

ROC curves of the two receivers for different values of 〈N〉. It can be seen that when 〈N〉 is
relatively large, the ROC curves of the two receivers are close to each other, that is, they have
nearly the same performance. And when the number of scatterers decreases, the performances
of both receivers decrease, while the receiver based on PSR techniques performs better than
the conventional receiver. Thus, it is proved again that in some conditions the conventional
receiver can be improved by PSR techniques.

As an example, a snapshot of reverberation R(x, t) from t = −0.1 s to 0.1 s was generated
with 〈N〉 = 100, and a target echo with A = 0.2 was embedded at time t = 0. Then the same
snapshot of r(x, t) was processed by the two receivers in figure 2, respectively. The temporal
output evolutions of the two receivers, normalized by σ 2 and σ ′2

m , respectively, are shown in
figure 9. Setting the threshold γ = 8, there are two false alarms for the conventional receiver,
and only one false alarm after the PSR techniques was used. It can be seen that from the output
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of the conventional receiver the true target position has been covered up by the high exceeding
over the threshold due to the reverberation, and the high exceedings were suppressed by the
PSR techniques, making the true target emerge.

In summary, it has been shown from our simulations that when the number of scatterers
that contribute to the reverberation at the same time is not very large, the receiver based on
PSR techniques will perform better and be more efficient for reverberation suppression than
the conventional receiver.

4. Conclusions

In this paper, the problem of target detection in the presence of reverberation was considered,
and the receiver based on PSR techniques for this detection problem was evaluated versus
the conventional receiver. The reverberation is modeled according to point-scattering
theory. Although the reverberation R(x, t) has Gaussian PDF and Rayleigh envelope when
the scatterer number is large, the square roots of the outputs of the two receivers,

√
l

and
√

l′, are both non-Rayleigh, resulting in higher probabilities of false alarm than the
desired. Nevertheless, the results of numerical simulations show some advantages of the PSR
techniques: when the number of scatterers that contribute to the reverberation at the same time
is not very large, in a certain region of the threshold γ , the receiver based on PSR techniques
has equal or smaller probabilities of false alarm but higher detection probabilities than those
of the conventional receiver. That is to say, in some conditions, the receiver based on PSR
techniques will perform better and be more efficient for reverberation suppression than the
conventional receiver.

Acknowledgments

The authors greatly appreciate the support provided by the National Natural Science
Foundation of China (no 10772161) and the National Natural Science Foundation for the
Youth of China (no 60702022).

Appendix. Derivation of σ2 and σ′2
m

According to equation (5), there is

eij � E[r(xi, t − τ(xi))r(xj , t − τ(xj ))|H0]

=
{

σ 2
RJ0

(
2π
x

λ

) (
1 − τ(
x)

T

)
cos 2πf0τ(
x), τ (
x) < T,

0, otherwise,
(A.1)

where the variance of reverberation σ 2
R is assumed to be normalized in this paper, τ(x) =

x cos θ/c,
x = |xi − xj | = |i − j |d, and d is the sensor interval. Thus, the variance of r(t)

in equation (12) under H0 hypothesis is

σ 2
r(t)|H0

= σ 2
R̄

= E[R̄2(t)] = 1

M2

∑
i

∑
j

eij . (A.2)

Again, according to equations (5), (8)–(10), there is

σ 2 = E[l|H0] = E
[
L2

c

∣∣H0
]

+ E
[
L2

s

∣∣H0
]

= 4

T 2

∫ T

0

∫ T

0
cos(ωt)E[r(t)r(t ′)|H0] cos(ωt ′) dt ′ dt
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+
4

T 2

∫ T

0

∫ T

0
sin(ωt)E[r(t)r(t ′)|H0] sin(ωt ′) dt ′ dt

≈ 4

T 2

∫ T

0

∫ T

0
cos(ωt)σ 2

R̄

(
1 − |t − t ′|

T

)
cos[ω(t − t ′)] cos(ωt ′) dt ′ dt

+
4

T 2

∫ T

0

∫ T

0
sin(ωt)σ 2

R̄

(
1 − |t − t ′|

T

)
cos[ω(t − t ′)] sin(ωt ′) dt ′ dt

≈ 2

T
σ 2

R̄

∫ T

−T

(
1 − |τ |

T

)2

dτ = 4

3
σ 2

R̄
. (A.3)

When equation (27) is used as the input of system (14), the result of σ ′2, derived from the
solutions of FPEs corresponding to equation (14) with R′(x) of length L′, should be modified.
Divide r ′′(x) and R′(x) into Tf0/k segments with each segment of length L, and then, in
each segment R′(x − nL, nk/f0) and R′(x) are statistically the same. In addition, σ ′2 is
proportional to the length L′ (when L′ is larger than the correlation length of the output y(x)).
Hence, the average contribution of each segment of R′(x) to σ ′2 approximates σ ′2/(Tf0/k),
and therefore, we can denote the average contribution of each segment of R′(x−nL, nk/f0) to
σ ′2

m as σ ′2
L = σ ′2/(Tf0/k). However, R′(x − nL, nk/f0) in different segments are correlated

according to equation (5), and the contributions of each segment σ ′2
L are weighted together to

σ ′2
m as

σ ′2
m = σ ′2

L

Tf0
k

−1∑
i,j=0

[cos(2πik)ρij cos(2πjk) + sin(2πik)ρij sin(2πjk)]

≈ 2kσ ′2

Tf0

Tf0
k

−1∑
i,j=0

[cos(2πik)ρij cos(2πjk)], (A.4)

where ρij = [1−|i−j |k/(Tf0)] cos[2π(i−j)k] is the coherence of R′(x−iL, ik/f0) (the ith
segment) and R′(x − jL, jk/f0) (the j th segment). It is obvious that if ρij = δ(i − j), σ ′2

m =
σ ′2 goes back to the case of R′(x).
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